Optimization of Kernel Alignment by Data Translation in Feature Space

نویسندگان

  • Jean-Baptiste Pothin
  • Cédric Richard
چکیده

Kernel-target alignment is commonly used to predict the behavior of reproducing kernels in a classification context, without training any kernel machine. In this paper, we show that a poor position of training data in feature space can drastically reduce the value of alignment. This implies that, in a kernel selection setting, the best kernel of a given collection may be characterized by a low alignment. To overcome this situation, we present a gradient ascent algorithm for maximizing the alignment by data translation in feature space. The aim is to reduce the biais introduced by the translation non-invariance of this criterion. Experimental results on multidimensional benchmarks show the effectiveness of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Data centering in feature space

This paper presents a family of methods for data translation in feature space, to be used in conjunction with kernel machines. The translations are performed using only kernel evaluations in input space. We use the methods to improve the numerical properties of kernel machines. Experiments with synthetic and real data demonstrate the effectiveness of data centering and highlight other interesti...

متن کامل

Kernel discriminant analysis for regression problems

In this paper, we propose a nonlinear feature extraction method for regression problems to reduce the dimensionality of the input space. Previously, a feature extraction method LDAr, a regressional version of the linear discriminant analysis, was proposed. In this paper, LDAr is generalized to a non-linear discriminant analysis by using the so called kernel trick. The basic idea is to map the i...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007